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Abstract

This paper presents an adaptive-passive solution to control the broadband sound transmission
into rocket payload fairings. The treatment is composed of passive distributed vibration absorbers
(DVAs) and adaptive Helmholtz resonators (HR). Both the frequency domain and time-domain model of a
simply supported cylinder excited by an external plane wave are developed. To tune vibration absorbers to
tonal excitation, a tuning strategy, based on the phase information between the velocity of the absorber
mass and the velocity of the host structure is used here in a new fashion to tune resonators to peaks in the
broadband acoustic spectrum of a cavity. This tuning law, called the dot-product method, only uses two
microphone signals local to each HR, which allows the adaptive Helmholtz resonator (AHR) to be
manufactured as an autonomous device with power supply, sensor, actuator and controller integrated.
Numerical simulations corresponding to a 2.8m long 2.5m diameter composite cylinder prototype
demonstrate that, as long as the structure modes, which strongly couple to the acoustic cavity, are damped
with a DVA treatment, the dot-product method tune multiple HRs to a near-optimal solution over a broad
frequency range (40–160Hz). An adaptive HR prototype with variable opening is built and characterized.
Experiments conducted on the cylinder prototype with eight AHRs demonstrate the ability of resonators
adapted with the dot-product method to converge to near-optimal noise attenuation in a frequency band
including multiple resonances.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In an attempt to increase payload size and increase efficiency, aerospace structures have become
progressively lighter. One drawback to this development is a decrease in broadband low-
frequency transmission loss where passive sound absorption treatments are very ineffective. One
solution is to apply optimally damped Helmholtz Resonators (HRs) to increase the acoustic
damping of the enclosure, and optimally damped distributed vibration absorbers (DVAs) to
increase the damping of the structure. This method has been investigated theoretically [1,2] and
has recently been tested experimentally [3]. The results of these tests show that multiple HRs
effectively reduce the overall sound pressure level inside a lightly damped cylinder that is excited
with a high-level external sound source. Optimally damped DVAs, provide further noise
attenuations by reducing the amplitude of structural modes, that couple well to the interior cavity.
For a HR/DVA treatment to be effective, these devices must be tuned so that they interact with
the acoustic/structural modes of the cylinder. In this paper, tunable HRs are designed and a
control scheme is developed in order to tune the HR to the natural frequencies of a cavity which
change with different payload fills. This work represents an improvement from the simply passive
treatment presented in Ref. [1] into an adaptive-passive treatment.

To improve the performance of passive treatments and especially to increase their robustness to
uncertainty and to changes in the excitation frequency or in the system’s characteristics, adaptive-
passive methods have been developed. Adaptive-passive treatments are made of passive devices
such as dynamic vibration absorbers or HRs, which cannot inject energy in the system they are
implemented in. Thus, they rarely increase the system’s overall energy as opposed to active control
treatments. As mentioned by Bernhard [4], most effective adaptive passive solutions have been
developed for narrow frequency band applications where they provide a great advantage over
active control means in terms of cost and power consumption and over passive treatments in term
of robustness. Several authors have constructed resonators whose tuning frequency is modified by
varying the volume of the HR’s cavity [5–7] or by varying the opening area [8]. All of this research
involves the tuning of a single device using gradient-based search algorithm or feedback control
scheme to minimize a tonal excitation at one error microphone. In contrast, this paper presents
multiple devices that adapt to changes in the natural frequencies of the system under broadband
excitation in order to lead to global noise reduction. For the global control of structural vibration
under single-frequency excitation, Dayou et al. [9] investigated the use of multiple-tuned vibration
absorbers. To avoid complex tuning algorithms, and numerous sensors to estimate global
vibration, the absorbers are tuned to the excitation frequency using a simple local control strategy
[10,11], This tuning strategy, called the dot-product or (or cross-product) method uses the phase
information between the velocity of the absorber mass and the velocity of the host structure. It has
recently been shown [12] theoretically that when applied to multiple absorbers, this method, can
lead to good broadband attenuation in a lightly damped modal system. Here, this method is
applied to HRs and is extended to a realistic noise transmission scenario where the adaptive
devices are used to control the sound transmission into a large composite cylinder excited by a
broadband external noise source. The effect of the structural excitation is therefore taken into
account. Under this tuning law the HRs can track changes in the acoustic spectrum provoked by
varying payloads fills. This control strategy also uses information that is purely local to each
device, namely the pressure inside the HR cavity and the pressure outside the throat, and is
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Fig. 1. Schematic of a simply supported cylinder embedded in an infinite rigid baffle, excited by an oblique plane wave

of elevation angle ai; and treated with DVAs and adaptive HRs.
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therefore more practical than global strategies. Indeed, each device is independent and can be
manufactured as a generic device with power supply, controller, actuator and sensor integrated.

The system studied here is represented in Fig. 1. The paper is organized as follows. Section 2 of
this paper consists of the mathematical model which is composed of five parts: (1) the incident
random noise and the diffraction around the cylinder, (2) the modal model of the cylindrical
structure assuming simply supported boundary conditions, (3) the modal model of the acoustic
cavity, (4) the coupling between the passive DVAs and the structure, and (5) the interaction of the
HRs with the cylindrical cavity. The entire system is represented in the frequency domain [1] by
coupling together two modal models. In the time-domain, it is described using a state-space
approach with the appropriate forcing functions (including diffraction of the incident field)
applied to the states of the system.

In Section 3, the dot-product method and its mechanisms for both single frequency and
broadband excitation is presented. Then, in Section 4, numerical simulations show the real-time
adaptation of the HRs in a single and multi-mode case.

To validate the numerical simulations, experimental results conducted on a 2.8m long 2.5m
diameter composite cylinder are presented in Section 5. The characteristics of developed adaptive
HR prototype as well as the controller used in this experiment are detailed. Some conclusions are
given in Section 6.
2. Mathematical model

The theoretical model presented here is based on the coupling of a structural modal model to a
modal model of the acoustic cavity. The DVAs and the HRs are coupled to the structural and the
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acoustic model, respectively, using an impedance matching method. As the frequency model has
been presented in detail in Ref. [1], the derivations used to obtain the different elements of the
system are omitted here and only the architecture of the model leading to its matrix formulation is
presented. However, the time-domain model of the system not presented in Ref. [1] is derived in
detail.

2.1. Frequency domain model

Considering the system described in Fig. 1, the velocity amplitude vector of the structural
modes v can be expressed as

v ¼ Asf ¼ As
ðfext þ fdva þ f intÞ, (1)

where As is the diagonal matrix of modal mobility of the cylinder (includes resonance term), fext is
the external modal force vector due to the incident acoustic plane wave, fdva is the force vector
exerted by the DVA treatment and f

int is the internal modal force vector due to the acoustic
pressure in the cavity. The external modal force (fext) is obtained by integrating the product of
pressure distribution created by the incident plane wave and the structural mode shape over the
surface of the cylinder. This external forcing includes the diffraction of the plane wave by the rigid
cylinder [1]. The reacting force exerted by the DVAs (fdva) is a function of the location and the
dynamics of the device, and can be expressed as

fdva ¼ ðUSÞ
TZdU

Sv, (2)

where Zd is the diagonal matrix of the DVA impedances, that are a function of the mass, tuning
frequency and damping ratio of the DVA [1]. A DVA is a particular design of dynamic vibration
absorber consisting in a distributed spring made of acoustic foam on top of which is glued a
distributed mass layer. When the structural wavelength is much larger than the footprint of the
DVA, this device acts mainly as a point vibration absorber and is assumed to exert a uniformly
distributed force to the structure it is attached to. Therefore, it is modeled as a single degree of
freedom (dof) system. Nevertheless, the larger and variable DVA footprint represents an
advantage over the point absorber as it reduces stress concentration at the attachment surface and
allows a more compact device. The fully populated matrix US in Eq. (2) represents the spatial
coupling between multiple DVAs and the structure. Each element of this structure–DVA coupling
matrix is obtained by integrating the cylinder structural mode shape over the footprint of the
DVA [1]. The superscript ‘T’ denotes the transpose. Neglecting the external fluid loading on the
cylinder wall and combining Eqs. (1) and (2) yields the velocity amplitude vector of the structural
modes,

v ¼ ½I� AsUsTZdU
s��1As

ðfext þ f intÞ. (3)

The coupling coefficient Ci,j between the ith structural mode and the jth acoustic mode is
computed by integration of the product of their shape [1] over the cylinder wall. The resulting
matrix C is the link between the structure and the acoustic cavity. By means of its physical
dimension (m2), it converts the structural modal velocity vector v into an modal acoustic source
strength vector, us:

us ¼ Cv. (4)
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Conversely, the coupling matrix C converts the pressure mode amplitude vector p of the acoustic
modes into the internal modal force vector fint introduced in Eq. (1):

f int ¼ �CTp. (5)

The pressure amplitude vector p is expressed as

p ¼ Aau ¼ Aa
ðus þ urÞ, (6)

where A
a is the diagonal matrix of modal acoustic impedances of the cavity (includes resonance

term) and u
r is the acoustic modal source strength created by the HRs. The admittance of a HR

defined as the ratio of the volume velocity to a unit pressure at the HR opening is derived using
the single dof mechanical analog illustrated in Fig. 2. In order to provide broadband vibration
and acoustic attenuation the DVAs and HRs are optimally damped [1]. Therefore, using a viscous
damping model, damping ratios, zh and zd are implemented in the HR admittance and DVA
impedance respectively. The damping of a HR is mainly caused by energy dissipation of the air in
motion and can therefore be adjusted by placing acoustic screens across the resonator opening.
Assuming a uniform acoustic velocity distribution across the opening, the radiation loading is
taken into account by adding an interior and exterior neck correction factor di and de that are
expressed as [13]

di ¼ de ¼ 0:48
ffiffiffiffi
sh

p
, (7)

when the HR opening cross-sectional area sh is assumed to be small compared to the cross section
of the HR cavity. However, only the interior neck correction factor is included in this model as the
external radiation loading is accounted for in the coupling with the cylinder cavity. Under this
assumption, a HR behaves like a piston source. Thus, the coupling coefficient between a HR and
the cavity is obtained by integrating the acoustic mode shape over the HR opening. These
coefficients are grouped in the fully populated acoustic–HR coupling matrix Ua and the acoustic
modal source strength u

r created by the HRs is given by

ur ¼ ðUaÞ
TYhU

ap, (8)

where Yh is the diagonal matrix of HR admittances.
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Fig. 2. Schematic and mechanical analog of a HR exposed to an external acoustic pressure p and through whose neck

flows a volume velocity u.
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Thus, the HR-coupled modal acoustic pressure vector p is expressed as

p ¼ ½I� AaUaTYhU
a��1AaCv. (9)

Combining Eqs. (3) and (9), the fully coupled velocity and acoustic response are given by

v ¼ ½Iþ AsCT
½I� AaUaTYhU

a��1AaC� AsUsTZdU
s��1Asfext,

p ¼ ½I� AaUaTYhU
a��1AaCv. ð10Þ

In this study, to simplify the time-domain formulation and obtain reasonable computa-
tional time, the acoustic back coupling onto the structure represented by the internal forcing
f
int is neglected. This simplification introduces some discrepancies in the system structural
and acoustic response. However, these discrepancies remain small as long as the structure
density is far greater than the air density. Under this assumption, the system then becomes
one-way coupled and the structure is independent of the acoustic cavity dynamics. Therefore, the
vibration response is simplified to structural modes only whereas the acoustic response of the
cavity remains a mix of acoustic and structural resonances. The vibration and acoustic response
simplifies then to

v ¼ ½I� AsUsTZdU
s��1Asfext,

p ¼ ½I� AaUaTYhU
a��1AaC½I� AsUsTZdU

s��1Asfext. ð11Þ

In order to obtain an average sound pressure level independent of the location inside the
cylinder, the total time average acoustic potential energy Ep, is used and computed from the
pressure mode amplitude as [14]

Ep ¼
V

4rc2
pHp, (12)

where V is the volume of the cavity, r the air density, c the velocity of sound in air and the
superscript ‘H’ denotes the Hermitian transpose. Similarly, the total kinetic energy is used as an
indicator of the average vibration level of the structure and is expressed as

Ek ¼ 1
2
MvHv, (13)

where M is the mass of the cylinder. In the next section, the time-domain model of this one way
coupled system is derived.

2.2. Time-domain model

In order to simulate the real-time tuning of the resonators, the equations of the system
described in Fig. 1 needs to be expressed in the time domain. Fahy and Schofield [15] describe the
behavior of an enclosed fluid by

r2p �
1

c2

q2p

qt2
¼ �r

qq

qt
,

where q is the acoustic source strength density distribution within the volume and on the surface
of the enclosure. For the time-domain derivation, the acoustic velocity potential j is introduced
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and is related to the acoustic pressure p by

pðr; tÞ ¼ �r _jðr; tÞ. (14)

The dot indicates the differentiation with respect to time and r is the spatial vector regrouping the
coordinates. The governing equation then becomes

r2j�
1

c2
€j ¼ qðr; tÞ. (15)

The acoustic velocity potential can be expanded in terms of the pressure modes shape of the
acoustic cavity Ca:

jðr; tÞ ¼
X

N

aNðtÞCa
NðrÞ, (16)

where aNðtÞ is the amplitude and Ca
N is the shape of the Nth acoustic mode which satisfies the

homogeneous wave equation:

ðc2r2Ca
N � ~o2

NC
a
NÞaN ¼ 0, (17)

where ~oN is the complex natural frequency of mode N. Using hard wall boundary conditions, the
acoustic modes are assumed to be orthogonal and therefore multiplying Eq. (16) by Ca

N 0 and
integrating it over the volume isolates each mode N:

VLNð €aN � ~o2
NaNÞ ¼ �c2

Z
V

Ca
NðrÞqðr; tÞ dV , (18)

where LN is the normalization factor given by

LN ¼
1

V

Z
V

½Ca
N �

2ðrÞ dV .

The acoustic forcing on the right-hand side of Eq. (18) is composed of the forcing due to the
vibration of the cylinder wall QN, and the forcing due to the HRs Qr

N asZ
V

Ca
NðrÞqðr; tÞ dV ¼ QN þ Qr

N . (19)

The primary forcing QN is expressed as

QN ¼

Z
s

Ca
NðrÞ

X
Ns

Cs
Ns
ðrÞvNs

dS ¼
X
Ns

CN;Ns
vNs

, (20)

where vNs
is the velocity amplitude of the Ns structural mode Cs

Ns
and CN;Ns

is the Nth,
Nsth element of the coupling matrix C. The term QN is the time-domain version of an
element of the modal acoustic source strength vector u

s introduced in Eq. (4). The excitation
of the system can also be provided by an acoustic source placed inside the cavity. The
modal acoustic forcing created by a piston source of velocity vs at rs inside the cavity is then
given by

Qs
N ¼

Z
ss

Ca
NðrsÞ dss

� �
vs, (21)
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where ss is the piston area. In order to model the possible damping of the acoustic cavity,
the complex frequency ~oN is replaced by an equivalent real frequency oN and an
equivalent arbitrary damping coefficient cN, where ~oN ¼ ioN � cN=2: The modal damping ratio
zN is related to cN by cN ¼ 2zNoN : By rearranging Eq. (18), each acoustic mode amplitude is
obtained using

€aN þ cN _aN þ o2
NaN ¼ �

c2

VLN

ðQN þ Qr
NÞ. (22)

The HRs are modeled as piston sources, therefore, the modal forcing term Qr
N generated by Nr

resonators is expressed as a summation

Qr
N ¼

XNr

h¼1

Z
sh

Ca
NðrhÞ dsh

� �
_xh ¼

XNr

h¼1

fa
h;N

_xh, (23)

where _xh is the particle velocity at the opening of the hth HR, and sh is its area. The term fa
h;N is

one element of the acoustic–HR coupling matrix Ua given in Eq. (8). Using the resonator’s
mechanical analog model illustrated in Fig. 2, the HR behavior is described by

rlhsh
€xh þ shRh

_xh þ ðrc2s2h=VhÞxh ¼ �

Z
sh

pðrhÞ dsh, (24)

where Rh is the resistance of the HR responsible for its damping level, Vh is the HR volume, and
p(rh) is the acoustic pressure at the HR opening and lh ¼ l þ di: Using Eq. (14) and (16) in Eq. (24)
yields

€xh þ ch
_xh þ o2

hxh ¼
1

shlh

X
N

_aNðtÞf
a
h;NðrhÞ, (25)

where ch is the HR damping coefficient related to the damping ratio zh by ch ¼ 2zhoh and the HR
resonant frequency is given by

oh ¼ c

ffiffiffiffiffiffiffiffiffiffi
sh

Vhlh

r
. (26)

2.3. Matrix formulation of the system

Using Eqs. (22) and (25) the acoustic cavity–HRs coupled system is put in matrix form as

IN 0

0 IR

" #
€a
€n

( )
þ

CN C1

C2 CR

" #
_a
_n

( )
þ

X2
N 0

0 X2
R

" #
a

n

( )
¼

fN

0

� �
. (27)

IN and IR are the identity matrix of dimension N, the total number of acoustic modes, and Nr, the
total number of HRs, respectively. The vectors a and n group the amplitudes of the velocity
potential and the particle velocities at the HR openings. CN and CR are the diagonal matrices of
damping coefficient of the N acoustic modes and of the Nr HRs, respectively. Similarly X2

N and
X2

R are the diagonal matrices of the mode natural frequencies squared and the resonant frequency
squared of the HRs. The off diagonal matrices C1 and C2 represent the coupling between the HRs
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and the cavity. This coupling involves the velocity at the opening of the HRs and the time
derivative of the velocity potential mode amplitudes, which, from Eq. (14), are proportional to the
acoustic pressure. Using the HR–acoustic coupling matrix Ua yields

C1 ¼ K�1
N UaTc2=V ; C2 ¼ �L�1

R S�1
R Ua. (28)

LR, SR and KN are the diagonal matrices grouping the effective neck length, the opening area of
the HR and the normalization factor of the acoustic mode, respectively. The forcing vector fN in
Eq. (27) is given by

fN ¼ �K�1
N QNc2=V . (29)

If the acoustic cavity is excited from the inside by an acoustic piston source, the elements
of QN are obtained using Eq. (21). When the cavity is excited through the structure, these
elements are obtained using Eq. (20). For this particular case, the time-domain structural
mode amplitudes vNs

are required. Since the system is only one-way coupled, these amplitudes
are independent from the acoustic cavity response and therefore are obtained from the
frequency domain model. Using the frequency response of the structural mode
amplitude v, impulse response filters are created using the inverse Fourier transform.
The convolution of these filters with an external noise source assumed to be a uniformly
random signal leads to the time domain structural mode amplitudes. The cylinder scattering of the
incident plane wave, the structural coupling with the external pressure field, and the dynamics of
the structure are thus included in the forcing vector fN. Moreover, the effect of a DVA treatment
can be taken into account by using the frequency response of the structural mode with a DVA
treatment.

The real time adaptation of the HR natural frequencies uses a fourth-order Runge–Kutta
technique [16]. For this purpose Eq. (27) is rearranged in state space:

_yi ¼ Aiyi þ f i, (30)

where

yi ¼

a

n

_a
_n

2
66664

3
77775; Ai ¼

0 0 IN 0

0 0 0 IR

�X2
N 0 �CN �C1

0 �X2
R �C2 �CR

2
66664

3
77775; f i ¼

0

0

fN

0

2
6664

3
7775. (31)

The state of the system at the following time step i þ 1; which is Dt into the future, is calculated by
estimating the gradient of the state vector y and considering the input force:

yiþ1 ¼ yi þ Dt
g1

6
þ

g2

3
þ

g3

3
þ

g4

6

� �
. (32)

The four estimates of the gradient g1–g4 are given by

g1 ¼ Aiyi þ f i; g2 ¼ Aiðyi þ 0:5Dtg1Þ þ f iþ1=2,

g3 ¼ Aiðyi þ 0:5Dtg2Þ þ f iþ1=2; g4 ¼ Aiðyi þ Dtg3Þ þ f iþ1. ð33Þ

At each time step, the matrix Ai can be modified as the natural frequency of the HRs XR are
adjusted to minimized some cost function.
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3. The dot-product method

As a preliminary study for the new adaptive resonator concept presented in this paper, a
comparison between local and global strategies for the control of a set of modes was undertaken
by Johnson and Estève [12]. The idea is to investigate the interaction of multiple single dof systems
with a continuous system described by a set of modes. The shape of different local cost functions
due to tuning of these single dof systems is studied and compared to a global cost function. In Ref.
[12] the concrete example of a vibrating structure on to which multiple vibration absorbers are
attached is adopted to describe the different cost functions. The acoustic analog of this
mechanical system corresponds to an acoustic cavity coupled to multiple HRs. The pressure mode
amplitudes of the cavity are then equivalent to the velocity mode amplitudes of the structure, the
pressure at the opening of a HR is equivalent the base velocity of a vibration absorber, and finally
the pressure inside a HR is equivalent to the velocity of the absorber mass. In this analysis,
Johnson and Estève [12] show that the dot-product method is the only local cost functions of the
set that converge very close to a global solution for a multi-mode single absorber case. This
conclusion remains valid for the multi-mode multi-absorber case. Therefore, the dot-product
method is adopted here to tune multiple HRs. The mechanisms of this particular tuning law are
presented and analyzed in detailed in the next section for both single frequency and broadband
excitation.
3.1. Single frequency excitation

For a single dof vibration absorber, the tuning is achieved when the motion of the structure and
the absorber mass are in quadrature. The dot-product method is a tuning law developed for
adaptive vibration absorbers in single frequency control applications. It works by evaluating the
integral over a period of the excitation frequency of the product between the velocity amplitudes
of the absorber mass _xaðtÞ and the host structure _xsðtÞ: Taking the dot-product of the two discrete
time signals approximates this integral. By expressing for single-frequency excitation these time
signals as _xsðtÞ ¼ _X s cosðotÞ and _xaðtÞ ¼ _X a cosðot � fÞ; Long et al. [10] showed that the dot-
product is proportional to a cosine function of the phase angle between the host structure and the
absorber mass as

1

T

Z T=2

T=2
_xsðtÞ _xaðtÞ ¼

j _X sjj _X aj

2
cosðfÞ. (34)

When the two signals are in quadrature, the absorber is tuned and, assuming a lightly damped
absorber, the dot-product is approximately zero. As a consequence, the sign of the product can be
used to tune the absorber to the excitation frequency. When the absorber is over-tuned, the two
signals are almost in phase and the dot-product is positive. When the absorber is under-tuned, the
two signals are mostly out of phase and the dot-product becomes negative. The dot-product also
gives information on the magnitude of the tuning error. Using the acoustic analog, this tuning
algorithm is applied to a tunable HR by evaluating the dot-product between the pressure
amplitudes inside the HR, pint, and at its opening, pext. In this particular case, the dot-product, xp,



ARTICLE IN PRESS
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is therefore given by

xp ¼
1

T

Z T=2

T=2
pintðtÞpextðtÞ dt. (35)
3.2. Broadband excitation

Under broadband excitation, the product of the two signals is integrated over an arbitrary
period T. This integral provides an estimate at t ¼ 0 of the cross-correlation function X pint;pext

ðtÞ
between pint and pext which is expressed as

X pint;pext
ðtÞ ¼

Z þ1

�1

pintðtÞpextðt � tÞ dt. (36)

It can be seen that by setting t ¼ 0 and integrating over the finite period T (from �T=2 to T/2),
Eq. (36) reduces to Eq. (35) but for the 1/T factor. The longer the period T is, the more accurate
the correlation estimation becomes. The cross-correlation X pint;pext

ðtÞ can also be expressed as the
inverse Fourier transform of the cross-spectrum GðoÞ of the two signals:

X pint;pext
ðtÞ ¼

Z þ1

�1

Gpint;pext
ðoÞejot do. (37)

Using the even and odd properties of the real and imaginary part of the cross-spectrum, the dot-
product reduces to

X pint;pext
ðt ¼ 0Þ ¼

Z þ1

0

ReðGpint;pext
ðoÞÞ do. (38)

For frequencies well below the first mode of the HR cavity, the HR internal pressure pint is
uniform. As long as the frequency band of control remains below the first mode of the HR cavity,
the HR internal pressure pint is proportional to the volume velocity at its opening u [17]:

pintðoÞ ¼
rc2

ioVh

uðoÞ. (39)

Using the single dof mechanical analog of Fig. 2, the HR admittance Yh relating the HR volume
velocity to the impinging pressure at its opening, pext is expressed as

uðoÞ ¼ Y hðoÞpextðoÞ ¼
ioo2

hVh

rc2½ðo2
h � o2Þ � 2iBhooh�

pextðoÞ. (40)

Substituting Eq. (40) in Eq. (39), the internal pressure is expressed as a function of the external
pressure

pintðoÞ ¼
o2

h

½ðo2
h � o2Þ � 2iBhooh�

pextðoÞ. (41)
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The cross-spectrum of the two pressure signals then reduces to

Gpintpext
¼ pintðoÞp

n

extðoÞ ¼
o2

h

½ðo2
h � o2Þ � 2iBhooh�

jpextðoÞj
2. (42)

Eq. (42) shows that the real part of the cross-spectrum is positive below the HR tuning frequency
and negative above. Driving the dot-product given in Eq. (38) to zero tunes the HR such that an
equal amount of the real part of the cross-spectrum lies above and below its natural frequency.
Consequently, HRs are attracted to peaks in the spectrum of pext where most of the acoustic
energy is concentrated. Placed in a resonant environment, the HRs tune to the lightly damped
modes of the cavity where they are the most effective in adding damping and thus have a global
effect on the noise level as illustrated in Fig. 3. To be effective, the HR needs to be positioned at
the antinodes of acoustic modes. Since the dot-product evaluation is local, the acoustic modes
with nodes at the HR position are not captured in the pext spectrum and so the HR will not tune to
these uncontrollable modes. Therefore, the local tuning law, ensure the tuning to occur at
frequencies where the HR are the most effective in reducing the noise. However, if peaks in the
spectrum of pext correspond to lightly structural resonances, the HR will tune to these peaks
without damping them significantly. These structural resonances can be attenuated efficiently with
DVAs to avoid a non-optimal use of HRs. Another property of this method is the high-frequency
filtering of the broadband excitation due to the natural dynamics of the HR. Indeed, as seen in Eq.
(42), the displacement–force admittance of the HR provides a �12 dB per octave filter above the
tuning frequency. Excited with a constant volume velocity source, the acoustic resonances of the
cavity (pext) present a velocity–force admittance behavior with symmetric slopes of 6 and –6 dB
per octave before and after the natural frequency. Combining these two types of responses with
Eq. (42) leads to band-passed filter properties for the cross-spectrum. However, if the cavity is
excited by a constant volume acceleration source, the acoustic resonances (pext) present the same
displacement–force admittance behavior as the resonator. Consequently, the cross-spectrum
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behaves as a sixth-order low-pass filter. This may cause an under tuning of the HR by biasing the
dot-product to the low frequencies. Therefore, when the cavity is excited with a constant
acceleration source such as a speaker, the dot-product can be evaluated using the derivative of the
pressure signals. The resulting cross-spectrum presents band-passed filter properties, which ensure
a more accurate tuning. In the model, the pressures inside the HR and at its opening are expressed
as

pint ¼ rc2=Vhxh ði ¼ 1; . . . ; nÞ; pext ¼ �r
X

N

fa
h;N _aN ði ¼ 1; . . . ; nÞ, (43)

where n is the number of time steps defining the period T. In order to limit its absolute value by
unity, the dot-product, xp, is also normalized:

xp ¼
pint  pextffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpint  pintÞðpext  pextÞ
p . (44)
4. Numerical simulation

The following numerical simulations correspond to a 2.8m long 2.5m diameter composite
cylinder built by Boeing and used for the experiments presented in Section 5. The shell theory and
numerical values used to obtain the structural natural frequency of the cylinder are identical as in
Ref. [1]. For the real-time adaptation simulation, the length of the HR neck is chosen to vary the
HR tuning frequency.
4.1. Single mode forced by an internal source

In this section, the acoustic forcing is provided by a piston source inside the cavity; therefore,
because the model is only one-way coupled, the dynamics of the structure do not intervene in the
computation. The source modeled as a random signal is positioned at the bottom of the cylinder
(axial position z ¼ 0; radial position r ¼ 1:23; and circumferential position y ¼ p). Only the first
mode of the cavity with a natural frequency of 61.7Hz and a damping ratio of 1% is taken into
account. Three identical HRs are positioned at the boundary (i.e. r ¼ 1:23), at the bottom of the
cylinder ðz ¼ 0Þ and are evenly distributed around the circumference (y ¼ 0; 2p=3; 4p=3). The total
volume of the HRs represents 0.6% of the cavity volume. The HR optimal damping ratio is set to
5.2% [1]. The initial length of the necks are 12, 20 and 15 cm, which provide initial tuning
frequencies of 66.7, 55.1 and 62.0Hz, respectively. This configuration represents the over-tuned,
under-tuned and tuned cases for the HRs. Using the Runge–Kutta model with a time step of 1ms,
the necks of HRs are sequentially adapted by 2.5mm increments according to the value of the dot-
product evaluated over a period of 0.5 s. This sequential tuning strategy was adopted to be
consistent with the experiments presented in Section 5. Indeed, the experiments were performed
using a sequential controller. The use of a simultaneous controller to optimize the adaptation
speed will be investigated in future work. In this simulation, the HRs stop tuning when the
absolute value of the normalized dot-product drops below 0.01. Fig. 4 shows the evolution of
the dot-product and the tuning frequency for the three HRs as a function of time. As expected, the
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first HR drops its natural frequency down to 62.1Hz, the second raises it to 59.6Hz and the third
one maintains it at 62.0Hz. The adaptation time for the three HRs is less than 25 s (during the first
5 s, HRs are inactive).

4.2. Multi-mode forced by an external plane wave

In this section, the acoustic cavity is forced through the structure by an incident plane wave
ðai ¼ 701Þ: Fig. 5 shows the kinetic and acoustic energy obtained with the one-way coupled
frequency domain model with and without the DVA treatment. The simulation includes 36
structural modes and 17 acoustic modes with natural frequencies below 200Hz. The DVA
treatment, representing 2% of the cylinder mass, consists of a ring of 13 absorbers distributed
evenly around the circumference and placed halfway up the cylinder wall. The damping ratio of
the structural mode is set to 1% whereas the damping ratio of the DVAs is set to its optimal value
of 10% [1]. The DVAs target the most excited structural mode at 112.5Hz, which also couples
best to the acoustic cavity. Once this structural resonance is damped by the DVAs, the remaining
peaks in the acoustic energy spectrum correspond to the acoustic modes of the cavity and thus can
be damped by HRs. Without DVAs, a HR could tune to any structural peaks in the acoustic
spectrum even if it cannot damp them efficiently.

The HR treatment consists of two rings of five resonators placed at the bottom and halfway up
the cylinder walls. As for the DVAs, the five HRs are evenly distributed around the circumference.
The total volume of the HR treatment represents 4% of the cavity volume, and their damping
ratio is set to 9%. The time-domain velocity amplitudes of the structural modes with the DVA
treatment are substituted in the Runge–Kutta model. The time step is set to 0.5ms. The
adaptation is continued until all the HRs are considered tuned, when the absolute value of their
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normalized dot-product is less than 0.01. In this particular case, the adaptation lasts around 2min
(around 12 s per HR). Fig. 6 shows the acoustic potential energy for the bare cylinder and the
cylinder treated with HRs and DVAs before and after the adaptation. The initial tuning frequency
of the bottom and middle ring illustrated by the gray arrows in Fig. 6 are 50 and 170Hz,



ARTICLE IN PRESS
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respectively. The final tuning frequencies (black arrows) are for the bottom ring
[107.2,89.6,109.5,101.1,76.5]Hz and for the middle ring [148.1,146.3 136.9,136.1,130.1]Hz.

Initially tuned to 50 and 170Hz, the acoustic attenuation from 40 to 160Hz is 3.4 dB, where
1 dB is due to the DVAs. Even though they are not tuned, the HRs can still absorb some energy of
the neighboring peaks because of their high damping level, which broadens their frequency range
of action. However, once the adaptation is over the acoustic attenuation from 40 to 160Hz
increases up to 7.5 dB. This performance is similar to 7.7 dB obtained in Ref. [1] where five rings of
five HRs each, representing 6% of the cavity volume, were tuned to the five dominant acoustic
resonances between 40 and 160Hz. These simulations demonstrate that, as long as the structure
modes, which strongly couple to the acoustic cavity, are damped with a DVA treatment, the dot-
product method converges to a near-optimal solution.
5. Experimental results

This section describes the experiments conducted on the Boeing composite cylinder (see
Fig. 11). The key objective of these experiments is to test how the HRs adapt to multiple
resonances using the dot-product method. The cylinder acoustic cavity is therefore, excited using
and internal speaker and not through the structure. These conditions, allow concentrating the
effort on the design of the adaptive HRs and the control system, since no structural resonances are
well excited by the internal speaker. Therefore, DVAs, which have been tested before and proven
successful [3] are not required in these experiments.

5.1. Adaptive HR prototype

According to Eq. (26), changing the resonant frequency of a HR can be achieved by modifying
the volume, the opening area or the neck length. De Bedout et al. [6] built a tunable resonator with
a variable volume. This solution probably allows the widest tuning range and ensures the natural
frequency to vary as the square root of the volume. However, the HR efficiency is proportional to
its volume [15], and therefore this device has reduced efficiency when tuned above its lowest
frequency. In addition, the weight of the machinery required to change a sealed volume renders
such a device unsuited for aerospace applications.

Several designs of tunable HR with fixed volume were investigated. The best compromise
between tuning range and compactness is obtained for a variable opening HR as shown in Fig. 7.
The resonator cavity is made of a cardboard tube of 12.7 cm in diameter and enclosed with plastic
end-caps. On the top end-cap, an iris diaphragm provides the variable opening whose diameter
ranges from 9 to 58mm. The length of the tube (56 cm) was chosen to obtain a tuning range
including the first three acoustic mode of the cylinder at 63, 82, and 103Hz. Using a pulley
mechanism, a lightweight (28 g) small step motor is used to rotate the iris control arm as shown in
Fig. 8. This mechanism represented an easy, off the shelf and inexpensive solution. The adaptive
HR is equipped with two microphones; one placed in front of the opening, and the other flush
mounted to the back end cap to monitor the internal pressure. These two microphones provide
the two signals needed to evaluate the dot-product. Exciting the resonator with a speaker driven
with white noise, the transfer function between the two microphones are measured and used to
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Fig. 7. Adaptive HR prototype.

Fig. 8. Motorized iris diaphragm mechanism.
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evaluate the natural frequency and damping ratio for different opening diameters. Because of the
901 minimum step angle of the motor, only 30 different diameters can be obtained. The resulting
frequency resolution of approximately 2Hz is sufficient for this particular application, which
requires damped HRs. The resulting tuning curve is shown in Fig. 9. The good agreement between
the measured and the predicted natural frequency is obtained using a different neck length for
each opening diameter in Eq. (26). Indeed, as the leaves of the iris fold to open, the physical neck
increase from a minimum of 1mm to a maximum of 10mm due to the additional frame and end-
cap thickness. In Fig. 9 it can also be seen that the damping of the resonator varies significantly
with the tuning frequency. Created by viscous losses, the damping increase nonlinearly as the HR
opening is reduced. A fairly constant level of damping through out the frequency range is
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preferable to ensure the optimal performance of the HR. As a solution, a wire mesh screen is
placed over the opening to increase the damping levels, for diameters greater than 20mm. To
avoid a further increase of damping, already too high for smaller diameters, a 20mm diameter
disk is cut out of the center of the screen as shown in Fig. 10. The measured natural frequency and
damping ratio with this screen is also plotted in Fig. 9. The resonance of the HR is not affected by
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the presence of the screen. In addition, the screen ensures a more constant and favorable damping
level of 5% throughout the tuning range except for the lowest three frequencies.

5.2. Control system

The main advantage of the dot-product method is its possible implementation using analog
circuitry, which reduces the controller complexity, cost, and weight. Indeed, the analog signals of
the two microphones can be summed and then low-pass filtered yielding a positive or negative
continuous voltage that can then control the rotation of a standard DC motor. To avoid tuning
the HR outside of its functional range band-pass filtering of the two microphone signals around
this range would be sufficient. This simple scheme permits the integration of sensor, actuator and
controller into one generic device.

However, in this work, a digital centralized controller was developed to mimic the behavior of
multiple independent analog controllers. This centralized controller was more suitable to observe
the tuning mechanisms of several HRs simultaneously. This control system uses a Labview s

interface and is composed of two parts. The first part is the data acquisition system used to
acquire the time signals of the microphones. The second is the stepper motor driver, which uses
the parallel port of the computer and an electronic circuit composed of decoders and transistor
arrays. A 5 and 28V power supply is required for the electronics and the stepper motor,
respectively. This system allows the control of up to eight motors sequentially. Given the initial
diameter of the opening, the system tracks the iris variations and stops the motor whenever the
physical limits of the opening are reached.

5.3. Experimental setup

Eight adaptive HRs identical to the one in Fig. 7 each equipped with two microphones were
built. A speaker was placed at the bottom of the cylinder as seen in Fig. 11 and driven with
40–200Hz band passed white noise to excite the acoustic cavity. Three rings of five microphones
positioned at 48, 137, 233 cm from the bottom and 33 cm from the wall were used to obtain a
spatial average of the acoustic pressure inside the cylinder. A last microphone was placed inside
the disturbance speaker cabinet in order to estimate the volume velocity (VV) of the source [17].
The auto-spectra of all the microphones and their cross-spectrum with respect to the microphone
placed inside the speaker cabinet can be acquired simultaneously. The total volume of the
resonator represents only 0.4% of the cylinder’s cavity. As a consequence, to obtain the best
efficiency, the eight HRs are positioned as illustrated in Fig. 11 with their opening towards the
cylinder wall. In this configuration, the HRs are placed at antinodes of the first three acoustic
modes which orient with respect to the disturbance speaker.

5.4. Results

The microphone signals are first acquired when the HRs are inside the cylinder with tape over
their opening which renders them inactive. This configuration is called ‘‘bare’’ since it is equivalent
to the empty cylinder apart from the small volume taken by the HR. The tape is then removed
from the HR throats and the opening diameters are set to some initial value. The data is acquired
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Fig. 11. (a) Composite cylinder and (b) AHRs placed inside (top view) the cylinder.
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in this configuration, which is called ‘‘before adaptation’’. The control system is turned on, and
using the time signal of the HR microphones the adaptation begins. When the opening diameter
of each HR has converged, the control is turned off and all the sensor signals are acquired to
evaluate this ‘‘after adaptation’’ configuration.

The objective of this first experiment is to verify the tuning algorithm on a single mode. The HR
microphones signals are therefore digitally band-pass filtered around the third mode of the
acoustic cavity at 103Hz. The cut-on frequencies of the sixth-order Butterworth filters used were
95 and 115Hz. As explained in Section 3.2 the time derivative of the microphone signals are used
to compute the dot-product. To control the sensitivity of the tuning algorithm to noise introduced
by the signal differentiation, the dot-product threshold below which the HRs are considered tuned
is set to 0.05. The opening diameters of the HR are set initially to 12mm and the eight HRs are
adapted sequentially. With a sampling frequency of 1024Hz, the dot-product is evaluated over 1 s
using 1024 points. The adaptation process is carried on for about 5min, each iteration lasting
about 1 s. Fig. 12 plots the opening diameter of the eight HRs at each iteration. After
convergence, the HRs show some changes in the opening diameter corresponding to small tuning
frequency variations (see Fig. 9). These perturbations can be associated to the changes in the
disturbance due to the stochastic nature of the input. The effects of these small variations on the
performance were found to be negligible. Table 1 lists the corresponding initial and final tuning
frequencies obtained from the transfer function between the two microphones at each HR. As an
example, the transfer function of two HRs before and after adaptation is plotted in Fig. 13
showing the shift in their natural frequency. Note that these transfer functions are obtained as a
ratio of the cross spectrum of the two microphones with respect to the microphone placed in the
speaker cabinet, and the spike around 90Hz comes from the ratio of a zero in both cross spectra.
To further illustrate the convergence of the HRs toward the 104Hz-targeted resonance, Fig. 14
plots for two HRs the real part of the normalized cross-spectrum after band-passed filtering.
Initially under-tuned, the arithmetic area under the gray curve corresponding to the dot-product
value xp is negative. Once tuned, the positive and negative area under the black curve balances out
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Table 1

Tuning frequency of the eight HRs before and after the single-mode adaptation

Tuning frequency (Hz)

HR # Before adaptation After adaptation

1 72 105.5

2 69 105

3 66 104.5

4 67 105

5 69 108

6 70 101.5

7 67 101

8 67 106
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Fig. 12. Evolution of the opening diameter for the eight HRs for the single-mode experiment.
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yielding a dot-product value close to zero. The transfer functions between 14 monitoring
microphones and the microphone placed inside the speaker cabinet are used to get the average
sound pressure level inside the cylinder. Fig. 15 compares the acoustic response of the cavity for
the bare, before and after adaptation cases. Even though the HRs are initially detuned around
70Hz, they add some damping to the three acoustic peaks compare to the bare case. Once tuned,
the HRs provide a 6.5 dB attenuation in the 95–115Hz bandwidth of control.

The objective of this second experiment is to verify that the tuning algorithm would still
performs as expected in a multi-mode case. Although the HRs can tune to any of the first three
acoustic resonances of the cylinder, the bandwidth of control is set around the last two. The
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S.J. Estève, M.E. Johnson / Journal of Sound and Vibration 288 (2005) 1105–11301126



ARTICLE IN PRESS

50 60 70 80 90 100 110 120
130

135

140

145

150

155

160

165

S
P

L 
(1

4 
m

ic
s)

 p
er

 V
V

 (
dB

 r
ef

 2
 x

 1
0-5

)

Frequency (Hz)

Fig. 15. Measured acoustic response of the cavity before (gray line) and after the adaptation (black line) compared to

the bare response (dash line) for the single-mode experiment.

0 50 100 150 200 250 300 350
10

15

20

25

30

35

40

45

Iteration

O
pe

ni
ng

 d
ia

m
et

er
 (

m
m

)

Fig. 16. Evolution of the opening diameter for the eight HRs for the multi-mode experiment.
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unavoidable high damping level of the HR near 64Hz and the sharing of the already small 0.4%
volume ratio on three different modes will not lead to significant attenuation of the three peaks.
The digital filter cut-on frequencies for the HR signals are set to 75 and 115Hz, and the
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adaptation is carried on using the same procedure as with the single-mode experiment. Fig. 16
illustrates the evolution of the opening diameter and Table 2 lists the corresponding initial and
final HR tuning frequencies. As observed in the simulation, the HRs spread their natural
frequencies across the bandwidth of control. Fig. 17 shows the real part of the normalized cross-
spectrum for HR #2 tuned to the second mode and HR #4 tuned to the third. In both cases the
dot-product initially negative converges towards zero. The acoustic response of the cavity plotted
in Fig. 18 demonstrates the global effect of the tuning algorithm as both targeted peaks are
reduced by 6 and 8 dB compared to before the adaptation. The resulting overall attenuation in the
75–115Hz bandwidth of control is 4.2 dB.
Table 2

Tuning frequency of the eight HRs before and after the multi-mode adaptation

Tuning frequency (Hz)

HR # Before adaptation After adaptation

1 72 102.5

2 69 81

3 66 90

4 67 102

5 69 97

6 70 88

7 67 86

8 67 103
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for the multi-mode experiment.
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6. Conclusions

For this study, both a time and a frequency domain model of a composite cylinder excited by an
external plane wave have been developed. Using a state-space approach and a fourth
Runge–Kutta technique, the model couples together the structure, the acoustic cavity and two
types of noise reduction devices: DVAs (applied to the structure) and HRs (applied to the acoustic
cavity). The dot-product method commonly used to tune absorber to single frequency excitation
was applied in a new fashion to HRs for broadband frequency excitation. Under this tuning law,
the HRs can track changes in the natural frequencies of the acoustic cavity, caused by varying
payload fills, and hence maintain their performance. This strategy presents several advantages: it
uses information that is local to each devices and thus is more practical than global strategies, and
it can be implemented using simple analog circuitry which allows each device to be manufactured
as an autonomous generic device.

The numerical simulations have first demonstrated that the dot-product method allows HRs to
adapt to the natural frequency of a single acoustic mode of the cavity excited by an internal
source. When the excitation is produced by an external plane wave, simulations using 17 acoustic
modes showed that the dot-product method tunes the HRs to a near-optimum solution, 7.5 dB
noise reduction in the 40–160Hz band. However, this requires the structural resonances, which
appear in the acoustic spectrum, to be damped with a DVA treatment.

A prototype of adaptive HR with variable opening was built and characterized. A centralized
controller mimicking the behavior of multiple independent local controllers was developed in
order to track and observe the tuning mechanisms of up to eight HRs simultaneously. The
experiments carried on a large composite cylinder with eight adaptive resonators validated the
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simulations and demonstrated the ability of the dot-product method to tune resonators to near-
optimal solution over a frequency band including multiple resonances.
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